The role of the cantilever in Kelvin probe force microscopy measurements
نویسندگان
چکیده
The role of the cantilever in quantitative Kelvin probe force microscopy (KPFM) is rigorously analyzed. We use the boundary element method to calculate the point spread function of the measuring probe: Tip and cantilever. The calculations show that the cantilever has a very strong effect on the absolute value of the measured contact potential difference even under ultra-high vacuum conditions, and we demonstrate a good agreement between our model and KPFM measurements in ultra-high vacuum of NaCl monolayers grown on Cu(111). The effect of the oscillating cantilever shape on the KPFM resolution and sensitivity has been calculated and found to be relatively small.
منابع مشابه
Electrical modes in scanning probe microscopy.
Scanning probe microscopy methods allow the investigation of a variety of sample surface properties on a nanometer scale, even down to single molecules. As molecular electronics advance, the characterization of electrical properties becomes more and more important. In both research and industry, films made from composite materials and lithographically structured elements have already reached st...
متن کاملBreaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform.
Atomic force microscopy (AFM) offers unparalleled insight into structure and material functionality across nanometer length scales. However, the spatial resolution afforded by the AFM tip is counterpoised by slow detection speeds compared to other common microscopy techniques (e.g., optical, scanning electron microscopy, etc.). In this work, we develop an ultrafast AFM imaging approach allowing...
متن کاملFull data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space
Kelvin probe force microscopy (KPFM) has provided deep insights into the local electronic, ionic and electrochemical functionalities in a broad range of materials and devices. In classical KPFM, which utilizes heterodyne detection and closed loop bias feedback, the cantilever response is down-sampled to a single measurement of the contact potential difference (CPD) per pixel. This level of deta...
متن کاملHigh spatial resolution Kelvin probe force microscopy with coaxial probes.
Kelvin probe force microscopy (KPFM) is a widely used technique to measure the local contact potential difference (CPD) between an AFM probe and the sample surface via the electrostatic force. The spatial resolution of KPFM is intrinsically limited by the long range of the electrostatic interaction, which includes contributions from the macroscopic cantilever and the conical tip. Here, we prese...
متن کاملFast, high-resolution surface potential measurements in air with heterodyne Kelvin probe force microscopy.
Kelvin probe force microscopy (KPFM) adapts an atomic force microscope to measure electric potential on surfaces at nanometer length scales. Here we demonstrate that Heterodyne-KPFM enables scan rates of several frames per minute in air, and concurrently maintains spatial resolution and voltage sensitivity comparable to frequency-modulation KPFM, the current spatial resolution standard. Two com...
متن کامل